Теорема о кинетической. Теорема об изменении кинетической энергии. Формулировка закона сохранения энергии

Начнем с определения. Работа А силы F при перемещении х тела, к которому она приложена, определяется как скалярное произведение векторов F и х .

А= F·х= Fxcosα. (2.9.1)

Где α – угол между направлениями силы и перемещения.

Сейчас нам пригодится выражение (1.6 а), которое получено при равноускоренном движении. Но вывод мы сделаем универсальный, который и называется теоремой о кинетической энергии. Итак, перепишем равенство (1.6 а)

a·x =(V 2 –V 0 2)/2.

Умножим обе части равенства на массу частицы, получим

Fx =m(V 2 –V 0 2)/2.

Окончательно

А= m V 2 /2 – m V 0 2 /2. (2.9.1)

Величину Е = m V 2 /2 называют кинетической энергией частицы.

Вы привыкли, что в геометрии теоремы имеют свою устную формулировку. Чтобы не отстать от этой традиции, представим теорему о кинетической энергии в виде текста.

Изменение кинетической энергии тела равно работе всех сил, действующих на него.

Данная теорема носит универсальный характер, т. е. справедлива для любого вида движения. Однако точное её доказательство связано с применением интегрального исчисления. Поэтому мы его опускаем.

Рассмотрим пример движения тела в поле тяжести. Работа силы тяжести не зависит от вида траектории, соединяющей начальную и конечную точки, а определяется только разностью высот в начальном и конечном положениях:

А=mg(h 1 –h 2). (2.9.2)

Примем какую-нибудь точку поля тяжести за начало отсчета и будем рассматривать работу, совершаемую силой тяжести при перемещении частицы в эту точку из другой произвольной точки Р , находящейся на высоте h . Эта работа равна mgh и называется потенциальной энергией Е п частицы в точке Р :

Е п = mgh (2.9.3)

Теперь преобразуем равенство (2.9.1), механическая теорема о кинетической энергии примет вид

А= m V 2 /2 – m V 0 2 /2= Е п1 – Е п2 . (2.9.4)

m V 2 /2+ Е п2 = m V 0 2 /2+ Е п1 .

В этом равенстве в левой части стоит сумма кинетической и потенциальной энергии в конечной точке траектории, а в правой – в начальной.

Эту сумму называют полной механической энергией. Будем обозначать ее Е .

Е = Е к + Е п.

Мы пришли к закону сохранения полной энергии: в замкнутой системе полная энергия сохраняется.

Однако следует сделать одно замечание. Пока мы рассматривали пример так называемых консервативных сил . Эти силы зависят только от положения в пространстве. А работа, совершаемая такими силами при перемещении тела из одного положения в другое, зависит только от этих двух положений и не зависит от пути. Работа, совершаемая консервативной силой, является механически обратимой, т. е. меняет свой знак при возврате тела в исходное положение. Сила тяжести является консервативной силой. В дальнейшем мы познакомимся с другими видами консервативных сил, например, с силой электростатического взаимодействия.


Но в природе бывают и неконсервативные силы . Например, сила трения скольжения. Чем больше путь частицы, тем большую работу совершает сила трения скольжения, действующая на эту частицу. Кроме того, работа силы трения скольжения всегда отрицательна, т. е. «вернуть» энергию такая сила не может.

Для замкнутых систем полная энергия, конечно, сохраняется. Но для большинства задач механики более важным является частный случай закона сохранения энергии, а именно закон сохранения полной механической энергии. Вот его формулировка.

Если на тело действуют только консервативные силы, то его полная механическая энергия, определяемая как сумма кинетической и потенциальной энергий, сохраняется .

В дальнейшем нам понадобятся ещё два важных равенства. Как всегда, вывод заменим простой демонстрацией частного случая поля тяжести. Но вид этих равенств будет справедлив для любых консервативных сил.

Приведем равенство (2.9.4) к виду

А=F x= Е п1 – Е п2 = –( Е п.кон – Е п.нач)= – ∆U.

Здесь мы рассмотрели работу А при перемещении тела на расстояние ∆x. Величину ∆U, равную разности конечной и начальной потенциальной энергии, называют изменением потенциальной энергии. А полученное равенство заслуживает отдельной строчки и специального номера. Поспешим его присвоить ему:

А= – ∆U (2.9.5)

Отсюда же вытекает математическая связь между силой и потенциальной энергией:

F = – ∆U/∆x (2.9.6)

В общем случае, не связанном с полем тяжести, равенство (2.9.6) представляет собой простейшее дифференциальное уравнение

F= – dU/dx.

Последний пример рассмотрим без доказательства. Гравитационная сила описывается законом всемирного тяготения F(r)=GmM/r 2 и является консервативной. Выражение для потенциальной энергии гравитационного поля имеет вид:

U(r)= –GmM/r.

Автор : Разберем простой случай. На тело массой m, находящееся на горизонтальной плоскости, действует в течение промежутка времени Т горизонтальная сила F . Трение отсутствует. Чему равна работа силы F ?

Студент : За время Т тело переместится на расстояние S=аТ 2 /2, где а =F /m. Следовательно, искомая работа есть А =F S=F 2 T 2 /(2m).

Автор : Все правильно, если считать, что тело покоилось до того, как на него начала действовать сила. Несколько усложним задачу. Пусть до начала действия силы тело двигалось прямолинейно и равномерно с некоторой скоростью V 0 , сонаправленной с внешней силой. Чему теперь равна работа за время Т ?

Студент : Для расчета перемещения возьму более общую формулу S= V 0 T + аТ 2 /2, для работы получаю А =F (V 0 T + аТ 2 /2). Сравнивая с предыдущим результатом, вижу, что одна и та же сила за одинаковые промежутки времени производит разную работу.

Тело массой m скользит вниз по наклонной плоскости с углом наклона α. Коэффициент трения скольжения тела о плоскость k . На тело все время действует горизонтальная сила F . Чему равна работа этой силы при перемещении тела на расстояние S?

Студент : Произведем расстановку сил и найдем их равнодействующую. На тело действует внешняя сила F, а также силы тяжести, реакции опоры и трения.

Студент : Получается, что работа А= F Scos α и всё. Меня действительно подвела привычка каждый раз искать все силы, тем более что в задаче указана масса и коэффициент трения.

Студент : Работу силы F я уже вычислил: А 1 = F S cos α. Работа силы тяжести есть А 2 =mgSsin α. Работа силы трения … отрицательна, т. к. векторы силы и перемещения противоположно направлены: А 3 = – kmgScos α. Работа силы реакции N равна нулю, т. к. сила и перемещение перпендикулярны. Правда, я не очень понимаю смысла отрицательной работы?

Автор : Это означает, что работа данной силы уменьшает кинетическую энергию тела. Кстати. Давайте обсудим движение тела, изображенного на рис.2.9.1, с точки зрения закона сохранения энергии. Для начала найдите суммарную работу всех сил.

Студент : – А = А 1 + А 2 + А 3 = FScos α+ mgSsin α– kmgScos α.

По теореме о кинетической энергии разность кинетических энергий в конечном и начальном состояниях равна совершенной над телом работе:

Е к –Е н =А .

Студент : Может быть, это были другие уравнения, не относящиеся к данной задаче?

Автор : Но все уравнения должны давать одинаковый результат. Дело в том, что потенциальная энергия содержится в скрытом виде в выражении для полной работы. Действительно, вспомните А 2 =mgSsin α=mgh, где h – высота спуска тела. Получите, теперь из теоремы о кинетической энергии выражение закона сохранения энергии.

Студент : Так как mgh=U н – U к, где U н и U к соответственно начальная и конечная потенциальные энергии тела, то имеем:

mV н 2 /2 + U н + А 1 + А 3 = mV к 2 /2+ U к.

Студент : Это, по-моему, легко. Работа силы трения по модулю как раз и равна количеству теплоты Q . Поэтому Q = kmgScos α.

Студент : mV н 2 /2 + U н + А 1 – Q = mV к 2 /2+ U к.

Автор : Теперь несколько обобщим определение работы. Дело в том, что соотношение (2.9.1) верно только для случая действия постоянной силы. Хотя есть немало случаев, когда сила сама зависит от перемещения частицы. Приведите пример.

Студент : Первое, что приходит в голову, это растяжение пружины. По мере перемещения незакрепленного конца пружины сила, все увеличивается. Второй пример связан с маятником, который, как мы знаем, сложнее удержать при больших отклонениях от положения равновесия.

Автор : Хорошо. Давайте остановимся на примере с пружиной. Сила упругости идеальной пружины описывается законом Гука, в соответствии с которым при сжатии (или растяжении) пружины на величину х возникает сила, противоположно направленная смещению, линейно зависящая от х . Запишем закон Гука в виде равенства:

F = – kx (2.9.2)

Здесь k – коэффициент жесткости пружины, x – величина деформации пружины. Изобразите график зависимости F (x ).

Студент : Мой чертеж представлен на рисунке.

Рис.2.9.2

Левая половина графика соответствует сжатию пружины, а правая – растяжению.

Автор : Теперь вычислим работу силы F при перемещении от х =0 до х = S. Для этого существует общее правило. Если нам известна общая зависимость силы от смещения, то работа на участке от х 1 до х 2 есть площадь под кривой F(x) на этом отрезке.

Студент : Значит, работа силы упругости при перемещении тела от х =0 до х =S отрицательна, а модуль её равен площади прямоугольного треугольника: А = kS 2 /2.

А = kх 2 /2. (2.9.3)

Эта работа превращается в потенциальную энергию деформированной пружины.

История.

Резерфорд демонстрировал слушателям распад радия. Экран то светился, то темнел.

Теперь вы видите, сказал Резерфорд, что ничего не видно. А почему ничего не видно, вы сейчас увидите.

Работа равнодействующей всех сил , приложенных к телу, равна изменению кинетической энергии тела.

Эта теорема верна не только для поступательного движения твердого тела, но и в случае его произвольного движения.

Кинетической энергией обладают только движущиеся тела, поэтому ее называют энергией движения.

§ 8. Консервативные (потенциальные) силы.

Поле консервативных сил

Опр.

Силы, работа которых не зависит от пути, по которому двигалось тело, а определяется только начальным и конечным положениями тела, называются консервативными (потенциальными) силами.

Опр.

Поле сил – область пространства, в каждой точке которого на тело, помещенное туда, действует сила, закономерно меняющаяся от точки к точке пространства.

Опр.

Поле, не изменяющееся со временем, называется стационарным.

Можно доказать следующие 3 утверждения

1) Работа консервативных сил по любому замкнутому пути равна 0.

Доказательство:

2) Однородное поле сил консервативно.

Опр.

Поле называется однородным, если во всех точках поля силы, действующие на тело помещенное туда, одинаковы по модулю и направлению.

Доказательство:

3) Поле центральных сил, в котором величина силы зависит только от расстояния до центра, консервативно.

Опр.

Поле центральных сил – силовое поле, в каждой точке которого на точечное тело, движущееся в нем, действует сила, направленная вдоль линии, проходящей через одну и ту же неподвижную точку – центр поля.

В общем случае такое поле центральных сил не является консервативным. Если же в поле центральных сил величина силы зависит только от расстояния до центра силового поля (О), т.е. , то такое поле является консервативным (потенциальным).

Доказательство:

где - первообразная .

§ 9. Потенциальная энергия.

Связь силы и потенциальной энергии

в поле консервативных сил

Полем консервативных сил выберем начало координат, т.О.

Потенциальная энергия тела в поле консервативных сил. Эта функция определяется однозначно (зависит только от координат), т.к. работа консервативных сил не зависит от вида пути.

Найдем связь в поле консервативных сил при перемещении тела из точки 1 в точку 2.

Работа консервативных сил равна изменению потенциальной энергии с обратным знаком.

Потенциальная энергия тела поля консервативных сил есть энергия, обусловленная наличием силового поля, возникающего в результате определенного взаимодействия данного тела с внешним телом (телами), которое, как говорят, и создает силовое поле.

Потенциальная энергия поля консервативных сил характеризует способность тела совершить работу и численно равна работе консервативных сил по перемещению тела в начало координат (или в точку с нулевой энергией). Она зависит от выбора нулевого уровня и может быть отрицательной. В любом случае , а значит и для элементарной работы справедливо , т.е. или , где - проекция силы на направление движения или элементарное перемещение. Следовательно, . Т.к. мы можем перемещать тело в любом направлении, то для любого направления справедливо . Проекция консервативной силы на произвольное направление равна производной потенциальной энергии по этому направлению с обратным знаком.

Учитывая разложение векторов и по базису , , получим, что

С другой стороны из математического анализа известно, что полный дифференциал функции нескольких переменных равен сумме произведений частных производных по аргументам на дифференциалы аргументов, т.е. , а значит, из соотношения получим

Для более компактной записи данных соотношений можно использовать понятие градиента функции.

Опр.

Градиентом некоторой скалярной функции координат называется вектор с координатами, равными соответствующим частным производным этой функции.

В нашем случае

Опр.

Эквипотенциальной поверхностью называется геометрическое место точек в поле консервативных сил, значения потенциальной энергии в которых одинаковы, т.е. .

Т.к. из определения эквипотенциальной поверхности следует, что для точек этой поверхности, то , как производная константы, следовательно .

Таким образом, консервативная сила всегда перпендикулярна эквипотенциальной поверхности и направлена в строну убыли потенциальной энергии. (П 1 >П 2 >П 3).

§ 10. Потенциальная энергия взаимодействия.

Консервативные механические системы

Рассмотрим систему их двух взаимодействующих частиц. Пусть силы их взаимодействия центральные и величина силы зависит от расстояния между частицами (такими силами являются гравитационные и электрические кулоновские силы). Понятно, что силы взаимодействия двух частиц – внутренние.

Учитывая третий закон Ньютона (), получим , т.е. работа внутренних сил взаимодействия двух частиц определяется изменением расстояния между ними.

Такая же работа была бы совершена, если бы первая частица покоилась в начале координат, а вторая – получила перемещение , равное приращению ее радиус-вектора, т.е работу, совершаемую внутренними силами можно вычислять, считая одну частицу неподвижной, а вторую – движущейся в поле центральных сил, величина которых однозначно определяется расстоянием между частицами. В §8 мы доказали, что поле таких сил (т.е. поле центральных сил, в котором величина силы зависит только от расстояния до центра) консервативно, а значит, их работу можно рассматривать как убыль потенциальной энергии (определяемой, согласно §9, для поля консервативных сил).

В рассматриваемом случае эта энергия обусловлена взаимодействием двух частиц, составляющих замкнутую систему. Ее именуют потенциальной энергией взаимодействия (или взаимной потенциальной энергией). Она также зависит от выбора нулевого уровня и может быть отрицательной.

Опр.

Механическая система твердых тел, внутренние силы между которыми консервативны, называется консервативной механической системой.

Можно показать, что потенциальная энергия взаимодействия консервативной системы из N частиц слагается из потенциальных энергий взаимодействия частиц, взятых попарно, что можно представить.

Где - потенциальная энергия взаимодействия двух частиц i-ой и j-ой. Индексы i и j в сумме принимают независимые друг от друга значения 1,2,3, … , N. Учитывая, что одна и та же потенциальная энергия взаимодействия i-ой и j-ой частиц друг с другом, то при суммировании энергия будет умножаться на 2, вследствие чего появляется коэффициент перед суммой. В общем случае потенциальная энергия взаимодействия системы из N частиц будет зависеть от положения или координат всех частиц . Нетрудно видеть, что потенциальная энергия частицы в поле консервативных сил есть разновидность потенциальной энергии взаимодействия системы частиц, т.к. силовое поле есть результат некоторого взаимодействия тел друг с другом.

§ 11. Закон сохранения энергии в механике.

Пусть твердое тело движется поступательно под действием консервативных и неконсервативных сил, т.е. общий случай. Тогда равнодействующая всех сил, действующих на тело . Работа равнодействующей всех сил в этом случае .

По теореме о кинетической энергии , а также учитывая, что , получим

Полная механическая энергия тела

Если , то . Это и есть математическая запись закона сохранения энергии в механике для отдельного тела.

Формулировка закона сохранения энергии:

Полная механическая энергия тела не изменяется в отсутствии работы неконсервативных сил.

Для механической системы из N частиц нетрудно показать, что (*) имеет место.

При этом

Первая сумма здесь – суммарная кинетическая энергия системы частиц.

Вторая – суммарная потенциальная энергия частиц во внешнем поле консервативных сил

Третья – потенциальная энергия взаимодействия частиц системы друг с другом.

Вторая и третья суммы представляют собой полную потенциальную энергию системы.

Работа неконсервативных сил состоит из двух слагаемых, представляемых собой работу внутренних и внешних неконсервативных сил .

Также как и в случае движения отдельного тела, для механической системы из N тел, если , то , и закон сохранения энергии в общем случае для механической системы гласит:

Полная механическая энергия системы частиц, находящихся только под действием консервативных сил, сохраняется.

Таким образом, при наличии неконсервативных сил полная механическая энергия не сохраняется.

Неконсервативными силами являются, например, сила трения , сила сопротивления и другие силы, действия которых вызывают дессинацию энергии (переход механической энергии в теплоту).

Силы, приводящие к дессинации называются дессинативными. Некоторые силы не обязательно являются дессинативными.

Закон сохранения энергии имеет всеобщий характер и применим не только к механическим явлениям, но и ко всем процессам в природе. Полное количество энергии в изолированной системе тел и полей всегда остается постоянным. Энергия лишь может переходить из одной формы в другую.

С учетом этого равенства

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии.

Мы приступаем к изучению энергии - фундаментального физического понятия. Но предварительно нужно разобраться с другой физической величиной - работой силы.

Работа.

Пусть на тело действует постоянная сила и тело, двигаясь прямолинейно по горизонтальной поерхности, совершило перемещение . Сила не обязательно является непосредственной причиной перемещения (так, сила тяжести не является непосредственной причиной перемещения шкафа, который передвигают по комнате).

Предположим сначала, что векторы силы и перемещения сонаправлены (рис. 1 ; остальные силы, действующие на тело, не указаны)


Рис. 1.A=Fs

В этом простейшем случае работа определяется как произведение модуля силы на модуль перемещения:

. (1)

Единицей измерения работы служит джоуль (Дж): Дж=Н м. Таким образом, если под действием силы 1 Н тело перемещается на 1 м, то сила совершает работу 1 Дж.

Работа силы, перпендикулярной перемещению, по определению считается равной нулю. Так, в данном случае сила тяжести и сила реакции опоры не совершают работы.

Пусть теперь вектор силы образует с вектором перемещения острый угол (рис. 2 ).


Рис. 2. A=Fs cos

Разложим силу на две составляющие: (параллельную перемещению) и (перпендикулярную перемещению). Работу совершает только . Поэтому для работы силы получаем:

. (2)

Если вектор силы образует с вектором перемещения тупой угол , то работа по-прежнему определяется формулой (2) . В этом случае работа оказывается отрицательной.

Например, работа силы трения скольжения, действующей на тело в рассмотренных ситуациях, будет отрицательной, так как сила трения направлена противоположно перемещению. В этом случае имеем:

И для работы силы трения получаем:

где - масса тела, - коэффициент трения между телом и опорой.

Соотношение (2) означает, что работа является скалярным произведением векторов силы и перемещения:

Это позволяет вычислять работу через координаты данных векторов:

Пусть на тело действуют несколько сил и - равнодействующая этих сил. Для работы силы имеем:

где - работы сил . Итак, работа равнодействующей приложенных к телу сил равна сумме работ каждой силы в отдельности.

Мощность.

Часто имеет значение быстрота, с которой совершается работа. Скажем, на практике важно знать, какую работу сможет выполнить данное устройство за фиксированное время.

Мощность - это величина, характеризующая скорость совершения работы. Мощность есть отношение работы ко времени , за которое эта работа совершена:

Мощность измеряется в ваттах (Вт). 1 Вт = 1 Дж/с, то есть 1 Вт - это такая мощность, при которой работа в 1 Дж совершается за 1 с.

Предположим, что силы, действующие на тело, уравновешены, и тело движется равномерно и прямолинейно со скоростью . В этом случае существует полезная формула для мощности, развиваемой одной из действующих сил .

За время тело совершит перемещение . Работа силы будет равна:

Отсюда получаем мощность:

где -угол между векторами силы и скорости.

Наиболее часто эта формула используется в ситуации, когда - сила "тяги" двигателя автомобиля (которая на самом деле есть сила трения ведущих колёс о дорогу). В этом случае , и мы получаем просто:

Механическая энергия.

Энергия является мерой движения и взаимодействия любых объектов в природе. Имеются различные формы энергии: механическая, тепловая, электромагнитная, ядерная. . .

Опыт показывает, что энергия не появляется ниоткуда и не исчезает бесследно, она лишь переходит из одной формы в другую. Это самая общая формулировка закона сохранения энергии .

Каждый вид энергии представляет собой некоторое математическое выражение. Закон сохранения энергии означает, что в каждом явлении природы определённая сумма таких выражений остаётся постоянной с течением времени.

Измеряется энергия в джоулях, как и работа.

Механическая энергия является мерой движения и взаимодействия механических объектов (материальных точек, твёрдых тел).

Мерой движения тела является кинетическая энергия . Она зависит от скорости тела. Мерой взаимодействия тел является потенциальная энергия. Она зависит от взаимного расположения тел.

Механическая энергия системы тел равна сумме кинетической энергии тел и потенциальной энергии их взаимодействия друг с другом.

Кинетическая энергия.

Кинетической энергией тела (принимаемого за материальную точку) называется величина

где - масса тела, - его скорость.

Кинетической энергией системы из тел называется сумма кинетических энергий каждого тела:

Если тело движется под действием силы , то кинетическая энергия тела, вообще говоря, меняется со временем. Оказывается, именение кинетической энергии тела за некоторый промежуток времени равно работе силы . Покажем это для случая прямолинейного равноускоренного движения.

Пусть - начальная скорость, - конечная скорость тела. Выберем ось вдоль траектории тела (и, соответственно, вдоль вектора силы ). Для работы силы получаем:

(мы воспользовались формулой для , выведенной в статье "Равноускоренное движение"). Заметим теперь, что в данном случае проекция скорости отличается от модуля скорости разве что знаком; поэтому и . В результате имеем:

что и требовалось.

На самом деле соотношение справедливо и в самом общем случае криволинейного движения под действием переменной силы.

Теорема о кинетической энергии. Изменение кинетической энергии тела равно работе, совершённой приложенными к телу внешними силами за рассматриваемый промежуток времени.

Если работа внешних сил положительна, то кинетическая энергия увеличивается ( class="tex" alt="\Delta K>0">, тело разгоняется).

Если работа внешних сил отрицательна, то кинетическая энергия уменьшается (, тело замедляет движение). Пример - торможение под действием силы трения, работа которой отрицательна.

Если же работа внешних сил равна нулю, то кинетическая энергия тела за это время не меняется. Нетривиальный пример - равномерное движение по окружности, совершаемое грузом на нити в горизонтальной плоскости. Сила тяжести, сила реакции опоры и сила натяжения нити всегда перпендикулярны скорости, и работа каждой из этих сил равна нулю в течение любого промежутка времени. Соответственно, кинетическая энергия груза (а значит, и его скорость) остаётся постоянной в процессе движения.

Задача. Автомобиль едет по горизонтальной дороге со скоростью и начинает резко тормозить. Найти путь , пройденный автомобилем до полной остановки, если коэффициент трения шин о дорогу равен .

Решение. Начальная кинетическая энергия автомобиля , конечная кинетическая энергия . Изменение кинетической энергии .

На автомобиль действуют сила тяжести , реакция опоры и сила трения . Сила тяжести и реакция опоры, будучи перпендикулярны перемещению автомобиля, работы не совершают. Работа силы трения:

Из теоремы о кинетической энергии теперь получаем:

Потенциальная энергия тела вблизи поверхности Земли.

Рассмотрим тело массы , находящееся на некоторой высоте над поверхностью Земли. Высоту считаем много меньше земного радиуса. Изменением силы тяжести в процессе перемещения тела пренебрегаем.

Если тело находится на высоте , то потенциальная энергия тела по определению равна:

где - ускорение свободного падения вблизи поверхности Земли.

Высоту не обязательно отсчитывать от поверхности Земли. Как мы увидим ниже (формулы (3) , (4) ), физическим смыслом обладает не сама по себе потенциальная энергия, но её изменение. А изменение потенциальной энергии не зависит от уровня отсчёта. Выбор нулевого уровня потенциальной энергии в конкретной задаче диктуется исключительно соображениями удобства.

Найдём работу, совершаемую силой тяжести при перемещении тела. Предположим, что тело перемещается по прямой из точки , находящейся на высоте , в точку , находящуюся на высоте (рис. 3 ).

Рис. 3.A=mg(h1-h2)

Угол между силой тяжести и перемещением тела обозначим . Для работы силы тяжести получим:

Но, как видно из рис. 3 , . Поэтому

. (3)

Учитывая, что , имеем также:

. (4)

Можно доказать, что формулы (3) и (4) справедливы для любой траектории, по которой тело перемещается из точки в точку , а не только для прямолинейного отрезка.

Работа силы тяжести не зависит от формы траектории, по которой перемещается тело, и равна разности значений потенциальной энергии в начальной и конечной точках траектории. Иными словами, работа силы тяжести всегда равна изменению потенциальной энергии с противоположным знаком. В частности, работа силы тяжести по любому замкнутому пути равна нулю.

Сила называется консервативной , если при перемещении тела работа этой силы не зависит от формы траектории, а определяется только начальным и конечным положением тела. Сила тяжести, таким образом, является консервативной. Работа консервативной силы по любому замкнутому пути равна нулю. Только в случае консервативной силы возможно ввести такую величину, как потенциальная энергия.

Потенциальна яэнергия деформированной пружины.

Рассмотрим пружину жёсткости . Начальная деформация пружины равна . Предположим,
что пружина деформируется до некоторой конечной величины деформации . Чему равна при этом работа силы упругости пружины?

В данном случае силу на перемещение не умножишь, так как сила упругости меняется в процессе деформации пружины. Для нахождения работы переменной силы требуется интегрирование. Мы не будем приводить здесь вывод, а сразу выпишем конечный результат.

Оказывается, сила упругости пружины также является консервативной. Её работа зависит лишь от величин и и определяется формулой:

Величина

называется потенциальной энергией деформированной пружины (x - величина деформации).

Следовательно,

что полностью аналогично формулам (3) и (4) .

Закон сохранения механической энергии.

Консервативные силы называются так потому, что сохраняют механическую энергию замкнутой системы тел.

Механическая энергия тела равна сумме его кинетической и потенциальной энергий:

Механическая энергия системы тел равна сумме их кинетических энергий и потенциальной энергии их взаимодействия друг с другом.

Предположим, что тело совершает движение под действием силы тяжести и/или силы упругости пружины. Будем считать, что трения нет. Пусть в начальном положении кинетическая и потенциальная энергии тела равны и , в конечном положении - и . Работу внешних сил при перемещении тела из начального положения в конечное обозначим .

По теореме о кинетической энергии

Но работа консервативных сил равна разности потенциальных энергий:

Отсюда получаем:

Левая и правая части данного равенства представляют собой механическую энергию тела в начальном и конечном положении:

Следовательно, при движении тела в поле силы тяжести и/или на пружине механическая энергия тела остаётся неизменной при отсутствии трения. Справедливо и более общее утверждение.

Закон сохранения механической энергии . Если в замкнутой системе действуют только консервативные силы, то механическая энергия системы сохраняется.

При этих условиях могут происходить лишь превращения энергии: из кинетической в потенциальную и наоборот. Общий запас механической энергии системы остаётся постоянным.

Закон изменения механической энергии.

Если между телами замкнутой системы имеются силы сопротивления (сухое или вязкое трение), то механическая энергия системы будет уменьшаться. Так, автомобиль останавливается в результате торможения, колебания маятника постепенно затухают и т. д. Силы трения неконсервативны: работа силы трения очевидным образом зависит от пути, по которому перемещается тело между данными точками. В частности, работа силы трения по замкнутому пути не равна нулю.

Снова рассмотрим движение тела в поле силы тяжести и/или на пружине. Вдобавок на тело действует сила трения, которая за рассматриваемый промежуток времени совершает отрицательную работу . Работу консервативных сил (тяжести и упругости) по-прежнему обозначаем .

Изменение кинетической энергии тела равно работе всех внешних сил:

Но , следовательно

В левой части стоит величина - изменение механической энергии тела:

Итак,при движении тела в поле силы тяжести и/или на пружине изменение механической энергии тела равно работе силы трения. Так как работа силы трения отрицательна,изменение механической энергии также отрицательно: механическая энергия убывает.
Справедливо и более общее утверждение.

Закон изменения механической энергии.
Изменение механической энергии замкнутой системы равно работе сил трения, действующих внутри системы.

Ясно, что закон сохранения механической энергии является частным случаем данного утверждения.

Конечно, убыль механической энергии не противоречит общефизическому закону сохранения энергии. В данном случае механическая энергия превращается в энергию теплового движения частиц вещества и их потенциальную энергию взаимодействия друг с другом, т. е. переходит во внутреннюю энергию тел системы.

1. Кинетическая энергия тела равна произведению массы тела на квадрат его скорости, деленному пополам.

2. В чем состоит теорема о кинетической энергии?

2. Работа силы (равнодействующей сил) равна изменению кинетической энергии тела.

3. Как изменяется кинетическая энергия тела, если сила, приложенная к нему, совершает положительную работу? Отрица-тельную работу?

3. Кинетическая энергия тела растет, если сила, приложенная к телу совершает положительную работу и уменьшается, если сила совершает отрицательную работу.

4. Изменяется ли кинетическая энергия тела при изменении направления вектора его скорости?

4. Не меняется, т.к. в формуле у нас V 2 .

5. Два шара одинаковой массы катятся навстречу друг другу с одинаковыми по модулю скоростями по очень гладкой поверхности. Шары сталкиваются, на мгновение останавливаются, после чего движутся в противоположных направлениях с такими же по модулю скоростями. Чему равна их общая кинетическая энергия до столкновения, в момент столкновения и после него?

5. Общая кинетическая энергия до столкновения.

Теорема о кинетической энергии точки в дифференциальной форме

Умножая скалярно обе части уравнения движения материальной точки на элементарное перемещение точки получим

или, так как , то

Скалярная величина или половина произведения массы точки на квадрат ее скорости называется кинетической энергией точки или живой силой точки.

Последнее равенство составляет содержание теоремы о кинетической энергии точки в дифференциальной форме, которая гласит: дифференциал кинетической энергии точки равен элеменарной работе, действующей на точку силы.

Физический смысл теоремы о кинетической энергии заключается в том, что работа, производимая действующей на точку силой, накапливается в ней как кинетическая энергия движения.

Теорема о кинетической энергии точки в интегральной форме

Пусть точка переместилась из положения Л в положение В, пройдя по своей траектории конечную дугу АВ (рис. 113). Интегрируя в пределах от Л до Б равенство:

где соответственно скорости точки в положениях А и В.

Последнее равенство составляет содержание теоремы о кинетической энергии точки в интегральной форме, которая гласит: изменение кинетической энергии точки за некоторый промежуток времени равно работе, совершенной за то же время действующей на нее силой.

Полученная теорема справедлива при движении точки под действием любой силы. Однако, как указывалось, для вычисления полной работы силы нужно в общем случае знать уравнения движения точки.

Поэтому теорема о кинетической энергии, вообще говоря, не дает первого интеграла уравнений движения.

Интеграл энергии

Теорема о кинетической энергии дает первый интеграл урав нений движения точки, если полная работа силы может быть определена, не прибегая к уравнениям движения. Последнее, возможно, как ранее указывалось, если сила, действующая на точку, принадлежит к силовому полю. В этом случае достаточно знать только траекторию точки. Пусть траектория точки будет некоторая кривая, тогда координаты ее точек можно выразить через дугу траектории, и, следовательно, сила зависящая от координат точки, может быть выражена через

и теорема о кинетической энергии дает первый интеграл вида

где - дуги траектории, соответствующие точкам А и - проекция силы на касательную к траектории (рис. 113).

Потенциальная энергия и закон сохранения механической энергии точки

Особый интерес представляет движение точки в потенциальном поле, так как теорема о кинетической энергии дает при этом весьма важный интеграл уравнений движения.

В потенциальном поле полная работа силы равна разности значений силовой функции в конце и в начале пути:

Следовательно, теорема о кинетической энергии в этом случае записывается в виде:

Силовая функция, взятая с обратным знаком называется потенциальной энергией точки и обозначается буквой П:

Потенциальная энергия, так же как и силовая функция, задается с точностью до произвольной постоянной, значение которой определяется выбором нулевой поверхности уровня. Сумма кинетической и потенциальной энергии точки называется полной механической энергией точки.

Теорема о кинетической энергии точки, если сила принадлежит к потенциальному полю, записывается в виде:

где - значения потенциальной энергии, соответствующие точкам А и В. Полученное уравнение составляет содержание закона сохранения механической энергии для точки, который гласит: при движении в потенциальном поле сумма кинетической и потенциальной энергии точки остается постоянной.

Так как закон сохранения механической энергии справедлив только для сил, принадлежащих потенциальным полям, то силы такого поля называются консервативными (от латинского глагола conservare - сохранять), чем подчеркивается выполнение в этом случае сформулированного закона. Заметим, что если понятие кинетической энергии имеет в своем определении известные физические основания, то понятие потенциальной энергии этого лишено. Понятие потенциальной энергии в известном смысле является фиктивной величиной, которая определяется так, что изменения ее значения в точности соответствуют изменениям кинетической энергии. Введение этой величины, связанной с движением, помогает описанию движения и благодаря этому играет существенную роль в так называемом энергетическом описании движения, разрабатываемый аналитической механикой. В последнем и заключается смысл введения этой величины.

Где провести